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Developments of Closed-loop 

Simluation and Visualization 

Interfaces Using GPU

Dr. Pierre Boulanger

Department of Computing Science

University of Alberta

Department of Computing Science

University of Alberta

Virtual Analysis of a Francis Turbine 

at ñLa Herraduraò in Colombia
The main objective of the DIFRANCI Project is to apply a condition 

assessment methodology following holistic approach to the 

maintenance of the Francis turbines of "La Herradura" hydropower 

plant in Colombia. 

ÅProject in collaboration between:
ÅEmpresas Públicas de Medellín

ÅColombian Agency for Science and Technology 

ÅEAFIT University, Medellin, Colombia

ÅEPFL, Lausanne, Swizerland

ÅUofA, Edmonton, Canada

Digitizing the Turbine Using a Hand-Held 

Scanner

Scanning Using Handy Scan from Creaform 3D 

Reversed Engineered Model

Scanned Model of the Turbine

Extracted FEM Mesh

Particle Flow Pressure Variation
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Results of CFD Analysis

Wall Pressure

Comparisons of the computed pressure 

recovery coefficient with the 
experimental values, medium size mesh.

Rapid Virtual Prototyping 

ÅOnce a 3D model is created, virtual prototyping 

allows product testing without the need to build 

a real prototype

ÅAllows for shape and functional optimization

ÅAllows to tract the complete life cycle of a 

product

ÅThe turbine simulation took one 

month on a 64 CPUs Altix machine to 

complete?

ÅWe need something better!!!

The UofA/EAFIT GPU Based Virtual 

Wind Tunnel

Real-time CFD is Now Possible 

Thanks to GPU 

http://www.youtube.com/watch?v=i7gSH8KNa5I&feature=related

Tokyo Institute of Technology Builds 

Tesla GPU-based Heterogeneous Cluster

http://www.youtube.com/watch?v=78hL3PdTlhw&feature=related

CPUs versus GPUs

http://www.youtube.com/watch?v=i7gSH8KNa5I&feature=related
http://www.youtube.com/watch?v=78hL3PdTlhw&feature=related
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CPUs versus GPUs

ÅCPUs devote lots of area to control and storage
ÅGPUs devote most area to computational units

Generalized Multicore Machine

Slide Source: Michael McCool, Rapid Mind, SuperComputing, 2007

Cell Broadband Engine 
Architecture

Slide Source: Michael McCool, Rapid Mind, SuperComputing, 2007

NVIDIA GPU Architecture G80

Slide Source: Michael McCool, Rapid Mind, SuperComputing, 2007

All Multicores Are Not Equal

Å Multicore CPUs and GPUs are very different!

Å CPUs run general purpose programs well

Å GPUs run graphics (or similar prgs) well

Å General Purpose Programs have

Å Less parallelism

Å More complex control requirements

Å GPU programs

Å Highly parallel

Å Arithmetic intense

Å Simple control requirements

Modern Day GPU

Making use of specialized GPU devices such as multi-

GPU development on a variety of devices such as,

ÅQuadroplex d-series. 

Å8GB of frame buffer, 480 

cores.

Easy output to high-

def display: 4K x 4K
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Still not enough? Quadroplex S-series

16 GB of frame buffer, 

960 cores.

Modern Day GPU

Still not enough? Soft memory issues, Tesla  M2050 and 

M2070 GPUs, with ECC, code name Fermi...

ÅUp to 6GB of GDDR5  

memory

ÅECC @ 144 GB/s,

Å448 cores

ÅDelivers up to 515 Gigaflops 

of double precision peak 

performance in each GPU

Modern Day GPU

Tesla M2050 / M2070 GPU 

Computing Module

Almost Desktop Petaflops

ÅThe GPU revolution 

continue

ÅSGI Petaflops in a rack

ÅTrue real-time simulation 

and visualization

Recent Developments of Closed-loop Simulation and 

Visualization Interfaces Using GPU

SGI Prism XL

Tesla M2050 / M2070 GPU 

Computing Module

Misconceptions: 

GPU Looks Impressive...

- These devices will be short lived...already ten years old, 

and well-known company such as SGi are adapting much 

of their hardware because of lessons learned on the GPU 

- As with all true hardware revolution academia is behind: 

It is ironic how many papers were published in the 80s 

and 90s concerning specialized algorithms for specific 

super computers. But now some feel that GPU based 

algorithms are not publishable. hmm???

- there are many different access routines in 

terms of memory, processing warps, far 

more than conventional computing. 

Understanding the memory architecture and 

using it effectively is key to producing great 

results. Not trivial!

Misconceptions: 

- program it on the GPU, it will run faster. 

Modern Day GPU 

Misconceptions: 

- soft errors -- very uncommon -- problem 

solved with recent FERMI ECC memory

- Much slower for double precision 

calculation  ïYes but the 20-series Tesla 

GPUs are the first to deliver greater than 10X 

the double-precision horsepower of a quad-

core x86 CPU

Modern Day GPU
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-Most modern GPUs have peak memory 

bandwidth in the 120GB/s - 150GB/s 

-Fermi GPUs have the fastest double floating 

point operations available

-Fastest modern day intel i7ôs are at only 

31GB/s

- Now GPU have ECC memories

Modern Day GPU Software Tools

ÅCUDA

ÅOpenCL

ÅDirectCompute

ÅFortran

ÅMatlab

ÅParallel Nsight 

ÅCUDA Toolkit 3.2 

ÅVisual Profiler

Compute Unified Device 

Architecture

ľCompute Unified Device Architectureò

General purpose programming model

ÅUser kicks off batches of threads on the GPU

ÅGPU = dedicated super-threaded, massively data parallel 

co-processor

Targeted software stack

ÅCompute oriented drivers, language, and tools

Driver for loading computation programs into GPU

ÅStandalone Driver - Optimized for computation 

Å Interface designed for compute - graphics free API

ÅData sharing with OpenGL buffer objects 

ÅGuaranteed maximum download & readback speeds

ÅExplicit GPU memory management

Extended C

Declspecs
Å global, device, shared, 

local, constant

Keywords
Å threadIdx, blockIdx

Intrinsics
Å __syncthreads

Runtime API
Å Memory, symbol, 

execution management

Function launch

__device__ float filter[N]; 

__global__ void convolve (float *image)  {

__shared__ float region[M];

... 

region[threadIdx] = image[i]; 

__syncthreads()  

... 

image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

Extended C

gcc / cl

G80 SASS
foo.sass

OCG

cudacc
EDG C/C++ frontend

Open64 Global Optimizer

GPU  Assembly
foo.s

CPU Host Code 
foo.cpp

Integrated source
(foo.cu)

CUDA Programming Model:

A Highly Multithreaded Co-processor

The GPU is viewed as a compute device that:

Å Is a coprocessor to the CPU or host

Å Has its own DRAM (device memory)

Å Runs many threads in parallel

Data-parallel portions of an application are executed on 
the device as kernels which run in parallel on many 
threads

Differences between GPU and CPU threads 

Å GPU threads are extremely lightweight
Å Very little creation overhead

Å GPU needs 1000s of threads for full efficiency
Å Multi-core CPU needs only a few
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Thread Batching: Grids and Blocks

A kernel is executed as a grid 
of thread blocks
Å All threads share data 

memory space

A thread block is a batch of 
threads that can cooperate 
with each other by:
Å Synchronizing their execution

Å For hazard-free shared 
memory accesses

Å Efficiently sharing data 
through a low latency shared 
memory

Two threads from two different 
blocks cannot cooperate

Host

Kernel 

1

Kernel 

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Block and Thread IDs

Threads and blocks have IDs

Å So each thread can decide 
what data to work on

Å Block ID: 1D or 2D

Å Thread ID: 1D, 2D, or 3D 

Simplifies memory
addressing when 
processing
multidimensional data

Å Image processing

Å Solving PDEs on volumes

Å é

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

CUDA Device Memory Space Overview

Each thread can:

Å R/W per-thread registers

Å R/W per-thread local memory

Å R/W per-block shared memory

Å R/W per-grid global memory

Å Read only per-grid constant 

memory

Å Read only per-grid texture 

memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

HostÅ The host can R/W 

global, constant, and 

texture memories

Global, Constant, and Texture Memories

(Long Latency Accesses)

Global memory

ÅMain means of 
communicating R/W 
Data between host
and device

ÅContents visible to all 
threads

Texture and Constant 
Memories

ÅConstants initialized 
by host 

ÅContents visible to all 
threads

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

CUDA Highlights: Easy and Lightweight

ÅThe API is an extension to the ANSI C 

programming language

Low learning curve

ÅThe hardware is designed to enable 

lightweight runtime and driver

High performance

CUDA Device Memory Allocation

cudaMalloc()

ÅAllocates object in the 

device Global Memory

ÅRequires two parameters

ÅAddress of a pointer to the 

allocated object

ÅSize of of allocated object

cudaFree()

ÅFrees object from device 

Global Memory

ÅPointer to freed object

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host



7

CUDA Device Memory Allocation (cont.)

Code example: 

ÅAllocate a  64 single precision float array

ÅAttach the allocated storage to Md.elements

Åñdò is often used to indicate a device data 

structure

BLOCK_SIZE = 64;

Matrix Md

int size = BLOCK_SIZE * sizeof(float);

cudaMalloc((void**)&Md.elements, size);

cudaFree(Md.elements);

CUDA Host-Device Data Transfer

cudaMemcpy()

Åmemory data transfer

ÅRequires four parameters

ÅPointer to source 

ÅPointer to destination

ÅNumber of bytes copied

ÅType of transfer 

ïHost to Host

ïHost to Device

ïDevice to Host

ïDevice to Device

Asynchronous in CUDA 1.0

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memor

y

Thread (0, 

0)

Register

s

Local

Memor

y

Thread (1, 

0)

Register

s

Block (1, 0)

Shared Memory

Local

Memor

y

Thread (0, 

0)

Register

s

Local

Memor

y

Thread (1, 

0)

Register

s

Host

CUDA Host-Device Data Transfer 

Code example: 

ÅTransfer a  64 single precision float array

ÅM is in host memory and Md is in device memory

ÅcudaMemcpyHostToDevice and 

cudaMemcpyDeviceToHost are symbolic constants

cudaMemcpy(Md.elements, M.elements, size, 

cudaMemcpyHostToDevice);

cudaMemcpy(M.elements, Md.elements, size, 

cudaMemcpyDeviceToHost);

CUDA Function Declarations

Executed 

on the:

Only callable 

from the:

__device__ float DeviceFunc () device device

__global__ void  KernelFunc () device host

__host__   float HostFunc () host host

__global__ defines a kernel function

Å Must return void

__device__ and __host__ can be used together

CUDA Function Declarations

__device__ functions cannot have 

their address taken

For functions executed on the device:

ÅNo recursion

ÅNo static variable declarations inside the 

function

ÅNo variable number of arguments

Calling a Kernel Function ïThread 

Creation

A kernel function must be called with an execution 

configuration:

__global__ void KernelFunc (...);

dim3 DimGrid (100, 50);    // 5000 thread blocks

dim3 DimBlock (4, 8, 8);   // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared 

memory

KernelFunc <<< DimGrid , DimBlock , SharedMemBytes >>>(...);

Any call to a kernel function is asynchronous from 
CUDA 1.0 on, explicit synch needed for blocking
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More on CUDA

For more information on CUDA 

language take a look at the NVIDIA 

CUDA Zone website at:

http://www.nvidia.com/object/cuda_home.html#

Real-time Computational Fluid 

Simulation Based on SPH

ÅSPH - Smooth Particle Hydrodynamics

ÅParticle Based Method
Å Use particles to simulate surface flow motion

ÅPressure 
Å Preserve fluid incompressibility 

ÅViscosity 
Å Relative velocity based on the attraction among fluid 

particles

SPH Introduction

ÅNeighboring Particles

ÅParticles with a distance 

less than effective radius 

from a specific particle.

ÅDensity

Å Mass, Distance of 

neighbors

Introduction - Concept

Pressure Forces

Mass, Distance, Density, Pressure of neighbors

Viscosity Force

Neighbor Search ï3D Grid

Cube

Whole space Ą a Cube.

Cell / Grid 

Subspace  Ą Cell (unified index)

L * M * N Cells

L = Cube.x / CellSize

Hash Value

HashValue = Cell.x * M * N 

+ Cell.y * N

+ Cell. Z.

Particle Integration Using 

Runge Kutta

Euler Interpolation

hïtime offset

Ąvn+1 = vn + an * h :speed from force

Ąpn+1 = pn + vn * h :position from speed

Cumulative Error

ÅPosition change Ą force change

ÅStatic force during h

ÅStatic acceleration during h

ÅAccumulated error in the system

Better integration scheme using Runge Kutta

http://www.nvidia.com/object/cuda_home.html
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Runge Kutta Equations Euler vs Runge Kutta

Algorithm Overview

ÅBucket Generation 

ÅNeighborsô information

ÅDensity Computation 

ÅDensity of Neighbors and the 

present particle

ÅVelocity Update

ÅPosition Update

GPU Computation

Thread Assignment:

index = blockIdx.x * blockDim.x + threadIdx.x

1 thread per particle !

GPU Computation

OldPos

P_Hash

Density

NewPos

CalcHash

Rearrange

Bucket Gene

NewVel

OldVel

Bucket

Viscosity

Pressure Density Calc

Experiments

Particle Number: 32,728 

CPU: Intel Core2 Duo P8400 CPU (2.26 

GHz and 2.27 GHz) with Memory (RAM) 

3.0 GB. 

GPU: NVIDIA Quadro FX 5800

Visual Studio 2008 + OpenGL + Qt
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SPH Implemenation Using CUDA

http://www.youtube.com/watch?v=RqduA7myZok

GPU Result ïWet Mud (1) 

GPU Result ïWet Mud (2) GPU Result ïWet Mud (3) 

AMMI Lab. GPU Performance Lattice Boltzmann Model (LBM)

ÅThe lattice Boltzmann model simplify 

Boltzmannôs original equation by reducing the 

number of possible particle spatial positions and 

momentum from a continuum to a discrete set of 

particles. 

ÅParticle positions are now confined to nodes on 

the lattice, and the variations of momentum are 

reduced to 8 directions and 3 magnitudes.

Boltzmann Equation

http://www.youtube.com/watch?v=RqduA7myZok
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Speed-up for Latice Boltzman 

Implemenation
2-D Latice Boltzman Implemenation

http://www.youtube.com/watch?v=jUecNi222Fw

© John E. Stone and James C. Phillips, 2007-2009

University of Illinois, Urbana-Champaign 63

VMD ïñVisual Molecular Dynamicsò

Visualization and analysis of molecular dynamics simulations, sequence 

data, volumetric data, quantum chemistry simulations, particle systems, 

é

User extensible with scripting and plugins

http://www.ks.uiuc.edu/Research/vmd/

© John E. Stone and James C. Phillips, 2007-2009

University of Illinois, Urbana-Champaign
64

Electrostatic Potential Maps

Electrostatic potentials evaluated 

on 3-D lattice:

Applications include:

Å Ion placement for structure 

building

Å Time-averaged potentials for 

simulation

Å Visualization and analysis

Isoleucine tRNA synthetase

© John E. Stone and James C. Phillips, 2007-2009

University of Illinois, Urbana-Champaign

Global Memory

Texture Texture Texture Texture Texture TextureTexture

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

Parallel Data

Cache

GPU
Constant Memory

Direct Coulomb Summation on the GPU

Host

Atomic

Coordinates

Charges

Threads compute

up to 8 potentials, 

skipping by half-warps

Thread blocks:

64-256 threads

Grid of thread blocks

Lattice padding

© John E. Stone and James C. Phillips, 2007-2009

University of Illinois, Urbana-Champaign

Direct Coulomb Summation 

Runtime

GPU 

underutilized

GPU fully utilized, 

~40x faster than CPU

Lower 

is better

GPU initialization 

time: ~110ms 

http://www.youtube.com/watch?v=jUecNi222Fw
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© John E. Stone and James C. Phillips, 2007-2009

University of Illinois, Urbana-Champaign

GPU 1 GPU Né

Multi-GPU Direct Coulomb Summation

Evals/sec TFLOPS Speedup*

4-GPU (2 Quadroplex) 

Opteron node at NCSA

157 billion 1.16 176

4-GPU GTX 280 (GT200)

In new NCSA Lincoln cluster

241 billion 1.78 271

Speedups relative to Intel QX6700 CPU core w/ SSE

MRI and CT Reconstruction

kx

ky
Gridding

FFT

kx

ky

Cartesian Scan Data

(a) (b)

(b)

Spiral scan data + Gridding + FFT: 

Faster scan reduces artifacts, averaging increases SNR.

Reconstruction requires little computation.

Iterative 

Reconstruction

(c)

Spiral Scan Data

kx

ky

© David Kirk/NVIDIA and Wen-mei W. Hwu

Taiwan, June 30-July 2, 2008

Chemo Therapy Monitoring

6-12 weeks

Advanced MRI Reconstruction

dFWWFF HHH =+ rl )(

Compute Q

Acquire Data

Compute FHd

Find ɠ

Q depends only on scanner 

configuration

FHd depends on scan data

ɟ found using linear solver

ÅFHF computed once per 

iteration; depends on Q, FHd

ÅɚWHW incorporates 

anatomical constraints

More than 99.5% of time

Reconstruction of a 643 image use to 

take days!

Performance of FhD Computation

S.S. Stone, et al,  ñAccelerating Advanced MRI Reconstruction using 

GPUs,ò ACM Computing Frontier Conference 2008, Italy, May 2008.

On Demand Hyper-resolution CT 

Visualization Using GPU

Westgrid 4K x 2K Hyper-resolution Display
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Other Speed-ups Example Using GPU West Grid is a Large Resource of 

Compute Power

Westgrid Experimental GPU 

Cluster

Checkers cluster:

- 160 nodes

- Dual socket quad core nodes, 8 cores/node

- 1280 cores in total

- 16 GB memory/node (2 GB/core)

- Four nVidia Quadro Plex 2200 S4

- Each 2200 had 4 Quadro FX 5800 GPUs

- 16 GPUs in total

- Each GPU has 4GB memory

Westgrid GPU Cluster

ÅEach QuadroPlex 2200 connected to 

2 nodes Two GPUs per 8 core node

ÅBalance of 4 CPUs to 1 GPU 

Connection via PCI Express 16x

ÅCUDA environment installed

ÅSoon OpenCL will be installed

Conclusion

ÅGPUs are truly a revolution in computing

ÅAllow speed-up between 30 to 200 times at no 

extra cost

ÅHard to program if you do not know parallel 

computing but not much harder than using MPI

ÅGood debugger in Visual Studio environment

ÅIn our lab we have used it for CT reconstruction, 

Fluid Dynamics (SPH, LB), volumetric 

rendering, hyper-resolution displays, and Mesh-

less FEM 

ÅTruly enable closed-loop simluation and 

visualization 


